October 23, 2018 Volume 14 Issue 40

Motion Control News & Products

Designfax weekly eMagazine

Subscribe Today!
image of Designfax newsletter

Archives

View Archives

Partners

Manufacturing Center
Product Spotlight

Modern Applications News
Metalworking Ideas For
Today's Job Shops

Tooling and Production
Strategies for large
metalworking plants

Overhung load adaptors provide load support and contamination protection

Overhung load adaptors (OHLA) provide both overhung radial and axial load support to protect electrified mobile equipment motors from heavy application loads, extending the lifetime of the motor and alleviating the cost of downtime both from maintenance costs and loss of production. They seal out dirt, grime, and other contaminants too. Zero-Max OHLAs are available in an extensive offering of standard models (including Extra-Duty options) for typical applications or customized designs.
Learn more.


Why choose electric for linear actuators?

Tolomatic has been delivering a new type of linear motion technology that is giving hydraulics a run for its money. Learn the benefits of electric linear motion systems, the iceberg principle showing total cost of ownership, critical parameters of sizing, and conversion tips.
Get this informative e-book. (No registration required)


New AC hypoid inverter-duty gearmotors

Bodine Electric Company introduces 12 new AC inverter-duty hypoid hollow shaft gearmotors. These type 42R-25H2 and 42R-30H3 drives combine an all-new AC inverter-duty, 230/460-VAC motor with two hypoid gearheads. When used with an AC inverter (VFD) control, these units deliver maintenance-free and reliable high-torque output. They are ideal for conveyors, gates, packaging, and other industrial automation equipment that demands both high torque and low power consumption from the driving gearmotor.
Learn more.


Next-gen warehouse automation: Siemens, Universal Robots, and Zivid partner up

Universal Robots, Siemens, and Zivid have created a new solution combining UR's cobot arms with Siemens' SIMATIC Robot Pick AI software and Zivid's 3D sensors to create a deep-learning picking solution for warehouse automation and intra-logistics fulfillment. It works regardless of object shape, size, opacity, or transparency and is a significant leap in solving the complex challenges faced by the logistics and e-commerce sectors.
Read the full article.


Innovative DuoDrive gear and motor unit is UL/CSA certified

The DuoDrive integrated gear unit and motor from NORD DRIVE-SYSTEMS is a compact, high-efficiency solution engineered for users in the fields of intralogistics, pharmaceutical, and the food and beverage industries. This drive combines a IE5+ synchronous motor and single-stage helical gear unit into one compact housing with a smooth, easy-to-clean surface. It has a system efficiency up to 92% and is available in two case sizes with a power range of 0.5 to 4.0 hp.
Learn more.


BLDC flat motor with high output torque and speed reduction

Portescap's 60ECF brushless DC slotted flat motor is the newest frame size to join its flat motor portfolio. This 60-mm BLDC motor features a 38.2-mm body length and an outer-rotor slotted configuration with an open-body design, allowing it to deliver improved heat management in a compact package. Combined with Portescap gearheads, it delivers extremely high output torque and speed reduction. Available in both sensored and sensorless options. A great choice for applications such as electric grippers and exoskeletons, eVTOLs, and surgical robots.
Learn more and view all the specs.


Application story: Complete gearbox and coupling assembly for actuator system

Learn how GAM engineers not only sized and selected the appropriate gear reducers and couplings required to drive two ball screws in unison using a single motor, but how they also designed the mounting adapters necessary to complete the system. One-stop shopping eliminated unnecessary components and resulted in a 15% reduction in system cost.
Read this informative GAM blog.


Next-gen motor for pump and fan applications

The next evolution of the award-winning Aircore EC motor from Infinitum is a high-efficiency system designed to power commercial and industrial applications such as HVAC fans, pumps, and data centers with less energy consumption, reduced emissions, and reduced waste. It features an integrated variable frequency drive and delivers upward of 93% system efficiency, as well as class-leading power and torque density in a low-footprint package that is 20% lighter than the previous version. Four sizes available.
Learn more.


Telescoping linear actuators for space-constrained applications

Rollon's new TLS telescoping linear actuators enable long stroke lengths with minimal closed lengths, which is especially good for applications with minimal vertical clearance. These actuators integrate seamlessly into multi-axis systems and are available in two- or three-stage versions. Equipped with a built-in automated lubrication system, the TLS Series features a synchronized drive system, requiring only a single motor to achieve motion. Four sizes (100, 230, 280, and 360) with up to 3,000-mm stroke length.
Learn more.


Competitively priced long-stroke parallel gripper

The DHPL from Festo is a new generation of pneumatic long-stroke grippers that offers a host of advantages for high-load and high-torque applications. It is interchangeable with competitive long-stroke grippers and provides the added benefits of lighter weight, higher precision, and no maintenance. It is ideal for gripping larger items, including stacking boxes, gripping shaped parts, and keeping bags open. It has high repetition accuracy due to three rugged guide rods and a rack-and-pinion design.
Learn more.


Extend your range of motion: Controllers for mini motors

FAULHABER has added another extremely compact Motion Controller without housing to its product range. The new MC3603 controller is ideal for integration in equipment manufacturing and medical tech applications. With 36 V and 3 A (peak current 9 A), it covers the power range up to 100 W and is suitable for DC motors with encoder, brushless drives, or linear motors.
Learn more.


When is a frameless brushless DC motor the right choice?

Frameless BLDC motors fit easily into small, compact machines that require high precision, high torque, and high efficiency, such as robotic applications where a mix of low weight and inertia is critical. Learn from the experts at SDP/SI how these motors can replace heavier, less efficient hydraulic components by decreasing operating and maintenance costs. These motors are also more environmentally friendly than others.
View the video.


Tiny and smart: Step motor with closed-loop control

Nanotec's new PD1-C step motor features an integrated controller and absolute encoder with closed-loop control. With a flange size of merely 28 mm (NEMA 11), this compact motor reaches a max holding torque of 18 Ncm and a peak current of 3 A. Three motor versions are available: IP20 protection, IP65 protection, and a motor with open housing that can be modified with custom connectors. Ideal for applications with space constraints, effectively reducing both wiring complexity and installation costs.
Learn more.


Closed loop steppers drive new motion control applications

According to the motion experts at Performance Motion Devices, when it comes to step motors, the drive technique called closed loop stepper is making everything old new again and driving a burst of interest in the use of two-phase step motors. It's "winning back machine designers who may have relegated step motors to the category of low cost but low performance."
Read this informative Performance Motion Devices article.


Intelligent compact drives with extended fieldbus options

The intelligent PD6 compact drives from Nanotec are now available with Profinet and EtherNet/IP. They combine motor, controller, and encoder in a space-saving package. With its 80-mm flange and a rated power of 942 W, the PD6-EB is the most powerful brushless DC motor of this product family. The stepper motor version has an 86-mm flange (NEMA 34) and a holding torque up to 10 Nm. Features include acceleration feed forward and jerk-limited ramps. Reduced installation time and wiring make the PD6 series a highly profitable choice for machine tools, packaging machines, or conveyor belts.
Learn more.


There's always a tradeoff: Soldiers' movement-enhancing exoskeletons may impair decision-making

In lab experiments, soldiers wearing exoskeletons designed to improve physical performance reacted more slowly to visual cues.

By Jennifer Chu, MIT

As engineers make strides in the design of wearable, electronically active, and responsive leg braces, arm supports, and full-body suits, collectively known as exoskeletons, researchers at MIT are raising an important question: While these Iron Man-like appendages may amp up a person's strength, mobility, and endurance, what effect might they have on attention and decision making?

This device, known as the PowerWalk, harvests kinetic energy. It may reduce the number of batteries a soldier needs to carry, potentially lightening the load and freeing up space in backpacks for other supplies, including food and water. [Image: Bionic Power Inc.]

 

 

 

 

The question is far from trivial, as exoskeletons are currently being designed and tested for use on the battlefield, where U.S. soldiers are expected to perform focused tactical maneuvers while typically carrying 60 to 100 lb of equipment. Exoskeletons such as electronically adaptive hip, knee, and leg braces could bear a significant portion of a soldier's load, freeing them up to move faster and with more agility.

But could wearing such bionic add-ons, and adjusting to their movements, take away some of the attention needed for cognitive tasks, such as spotting an enemy, relaying a message, or following a squadron?

The answer, the MIT team found, is yes, at least in some scenarios. In a study that they presented in early October at the Human Factors and Ergonomics Society Annual Meeting in Philadelphia, the researchers tested volunteers, who were either active-duty members of the military or participants in a Reserve Officer Training Corps (ROTC) unit, as they marched through an obstacle course while wearing a commercially available knee exoskeleton and carrying a backpack weighing up to 80 lb. Seven of the 12 subjects had slower reaction times in a visual task when they completed the course with the exoskeleton on and powered, compared to when they finished it without the exoskeleton.

The researchers also found that the soldiers, when asked to follow a leader at a certain distance, were less able to keep a constant distance while wearing the exoskeleton.

The results, though preliminary, suggest that engineers designing exoskeletons for military and other uses may want to consider a device's "cognitive fit" -- how much of a user's attention or decision-making the device could potentially divert, even while assisting them physically.

"In a military exoskeleton, soldiers are supposed to be scanning for enemies in the environment, making sure where other people in their squad are, monitoring a whole variety of things," says Leia Stirling, an assistant professor in MIT's Department of Aeronautics and Astronautics and a member of the Institute for Medical Engineering and Science. "You don't want them to have to focus on how they're stepping because of the exoskeleton. That's why I was interested in how much attention these technologies require."

Stirling's co-authors on the paper include researchers at MIT, Draper, and the University of Massachusetts at Lowell.

Follow the leader
To investigate an exoskeleton's effect on a user's attention, the team set up an obstacle course at UMass Lowell's NERVE Center, a facility that normally tests and evaluates robots over various physical courses. Stirling and her colleagues modified an existing obstacle course to include cross-slopes and short walls to step over. Lights at both ends of the obstacle course were set up to intermittently blink on and off.

The team enlisted 12 male subjects and trained them over a period of three days. During the first day, they were each custom-fit with, and trained to use, a commercially available knee exoskeleton -- a rigid, powered knee brace designed to help extend a user's leg and increase endurance while, for example, in climbing over obstacles and walking over long distances.

VIDEO: Human-exosystem adaptation. Prof. Leia Stirling and graduate student Aditi Gupta are making wearable technologies more intuitive and human-centered by studying how people respond and adapt to exoskeletons in real time.

Over the following two days, the subjects were instructed to navigate the obstacle course while following a researcher, posing as a squadron member. As they made their way through the course, the subjects performed several cognitive tasks. The first was a visual task, in which the subjects had to press a button on a mock rifle as soon as they perceived a light go on. The second was a pair of audio tasks, in which the subjects had to respond to a radio call check with a simple "Roger, over," as well as a more complicated task, where they had to listen to three leaders reporting different numbers of enemies and then report the total number over the radio. The third was a follow-along task, where the subjects had to maintain a certain distance from the squadron leader as they navigated the course.

Overall, Stirling found that for the visual task, seven of the 12 subjects wearing the powered exoskeleton reacted significantly more slowly and tended to miss light signals completely, compared with their performance when not wearing the device. While wearing the powered knee brace, the subjects also had a harder time maintaining the specified distance when following the leader.

Fluid suits
Going forward, Stirling plans to investigate the importance of reaction times while wearing an exoskeleton in various contexts. The video above highlights ongoing work in collaboration with Dephy, Inc., MIT Lincoln Laboratory, and U.S. Natick Soldier Research, Development and Engineering Center (NSRDEC), which seeks to understand why some users are more adept than others at using exoskeletons.

"For a military soldier, if they don't detect an enemy over half a second, what does that mean? Does that put their life at risk, or is that OK?" Stirling says. "We need to better understand what these operationally relevant differences are. A reaction time of half a second for me walking down a sidewalk is probably not a big deal. But it could be a big deal in a military environment."

Interestingly, the team identified a few users who were unfazed by the addition of an exoskeleton, and who performed just as well in the visual, audio, and follow-along tasks.

"In this study, we see some people have no deficit in their attention. But some people do, and we're not sure why some people are good exoskeleton users and some have more difficulty," Stirling says. "Now we're starting to investigate what makes people good users versus less adept users. Is this driven from a motor pathway, or a perception pathway, or a cognitive pathway?"

Stirling's group is working toward a better understanding of the way humans adapt and react to exoskeletons and other wearable technologies, such as next-generation spacesuits.

"We're looking at the fluency between what the system is doing and what the human is doing," Stirling says. "If the human wants to speed up or slow down, can this system be designed to appropriately move so the human is not fighting the system, and vice versa?"

Marcia O'Malley, a professor of mechanical engineering at Rice University, says that knowing the cognitive effects of an exoskeleton is especially relevant if the device is used on the battlefield.

"A decrease in cognitive ability would be extremely detrimental, even if the physical capability of the warfighter is enhanced," says O'Malley, who was not involved in the research. "This [study] is about as close to ‘field testing' as you can get -- moving away from a controlled laboratory setting. So, while there is a good deal of variability in the results, they shed important light on the tradeoffs in physical and cognitive performance enhancement."

Beyond military and space applications, Stirling says that if the connection between the human and the machine can be made more fluid, requiring less of a user's immediate attention, then exoskeletons may find a much wider, commercial appeal.

"Maybe you want to be able to climb that mountain, or go on a longer hike, or you may be older and want to run around with your grandkids," Stirling says.

"How can you design exoskeletons so people can reduce their own injury risk and extend their capability, their activities of daily living? These systems are really exciting. We just want to be cognizant of the different risks that occur when you bring something into a natural environment."

This research was supported, in part, by Draper.

Published October 2018

Rate this article

[There's always a tradeoff: Soldiers' movement-enhancing exoskeletons may impair decision-making]

Very interesting, with information I can use
Interesting, with information I may use
Interesting, but not applicable to my operation
Not interesting or inaccurate

E-mail Address (required):

Comments:


Type the number:



Copyright © 2018 by Nelson Publishing, Inc. All rights reserved. Reproduction Prohibited.
View our terms of use and privacy policy